References

  1. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–7 (2012).
  2. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in Cancer Cells. Nature 483, 570–5 (2012).
  3. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).
  4. Behan, F. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).
  5. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).
  6. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–60 (2015).
  7. Malladi, S. et al. Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell 165, 45–60 (2016).
  8. van der Weyden, L. et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541, 233–236 (2017).
  9. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2019).
  10. Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature 548, 297–303 (2017).
  11. Kennecke, H. et al. Metastatic Behavior of Breast Cancer Subtypes. J Clin Oncol 28, 3271–3277 (2010).
  12. Yu, C. et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat Biotechnol 34, 419–423 (2016).
  13. Budczies, J. et al. The landscape of metastatic progression patterns across major human cancers. Oncotarget 6, 570–583 (2014).
  14. Müller, C. et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 6, 247ra101 (2014).
  15. Fonkem, E., Lun, M. & Wong, E. T. Rare Phenomenon of Extracranial Metastasis of Glioblastoma. J Clin Oncol 29, 4594–4595 (2011).
  16. Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21, 274–281 (1978).
  17. 1Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular sigNature of metastasis in primary solid tumors. Nat Genet 33, 49–54 (2002).
  18. Zhang, X. H.-F. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–73 (2013).
  19. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–13 (2010).
  20. Witzel, I., Oliveira-Ferrer, L., Pantel, K., Müller, V. & Wikman, H. Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Res Bcr 18, 8 (2016).
  21. Valiente, M. et al. The Evolving Landscape of Brain Metastasis. Trends Cancer 4, 176–196 (2018).
  22. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–52 (2012).
  23. Koboldt, D. C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).
  24. Razavi, P. et al. The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell 34, 427-438.e6 (2018).
  25. Gatza, M. L. et al. A pathway-based classification of human breast cancer. P Natl Acad Sci Usa 107, 6994–9 (2010).
  26. Creighton, C. J. et al. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res Bcr 12, R40 (2010).
  27. Ricoult, S. J. H., Yecies, J. L., Ben-Sahra, I. & Manning, B. D. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene 35, 1250–60 (2015).
  28. Cai, Y. et al. Loss of Chromosome 8p Governs Tumor Progression and Drug Response by Altering Lipid Metabolism. Cancer Cell 29, 751–66 (2016).
  29. Li, H. et al. The landscape of Cancer Cell line metabolism. Nat Med 25, 850–860 (2019).
  30. Patra, K. C. & Hay, N. The pentose phosphate pathway and cancer. Trends Biochem Sci 39, 347–54 (2014).
  31. Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Brit J Cancer 122, 4–22 (2019).
  32. ain, M. et al. A systematic survey of lipids across mouse tissues. Am J Physiology Endocrinol Metabolism 306, E854-68 (2014).
  33. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8, 98–101 (1989).
  34. Dempster, J. et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat Commun 10, 5817 (2019).
  35. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125–1131 (2002).
  36. Varešlija, D. et al. Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets. Jnci J National Cancer Inst 111, 388–398 (2018).
  37. Angelova, M. et al. Evolution of Metastases in Space and Time under Immune Selection. Cell 175, 751-765.e16 (2018).
  38. Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov 8, 1006–1025 (2018).
  39. Zou, Y. et al. Polyunsaturated Fatty Acids from Astrocytes Activate PPAR Gamma Signaling in Cancer Cells to Promote Brain Metastasis. Cancer Discov 9, 1720–1735 (2019).
  40. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2016).
  41. Zhang, C., Lowery, F. J. & Yu, D. Intracarotid Cancer Cell Injection to Produce Mouse Models of Brain Metastasis. J Vis Exp (2017) doi:10.3791/55085.
  42. Ozawa, T. & James, C. D. Establishing intracranial brain tumor xenografts with subsequent analysis of tumor growth and response to therapy using bioluminescence imaging. J Vis Exp Jove 1986 (2010) doi:10.3791/1986.
  43. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Sci New York N Y 352, 189–96 (2016).
  44. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–9 (2012).
  45. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47 (2015).
  46. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. Bmc Bioinformatics 12, 323 (2011).
  47. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinform Oxf Engl 26, 139–40 (2009). /li>
  48. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc National Acad Sci 102, 15545–15550 (2005).
  49. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. Bmc Bioinformatics 14, 7 (2013).
  50. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2, 401–4 (2012).