References
-
Park, J. R. et al. A phase III randomized clinical trial
(RCT) of tandem myeloablative autologous stem cell transplant (ASCT)
using peripheral blood stem cell (PBSC) as consolidation therapy for
high-risk neuroblastoma (HR-NB): A Children's Oncology Group (COG)
study. JCO 34, LBA3–LBA3 (2016).
-
Northcott, P. A. et al. Medulloblastoma comprises four
distinct molecular variants. J. Clin. Oncol. 29, 1408–1414
(2011).
-
Cho, Y.-J. et al. Integrative genomic analysis of
medulloblastoma identifies a molecular subgroup that drives poor
clinical outcome. J. Clin. Oncol. 29, 1424–1430 (2011).
-
Dome, J. S. et al. Children‘s Oncology Group’s 2013 blueprint
for research: renal tumors. Pediatr Blood Cancer 60, 994–1000
(2013).
-
Weigel, B. J. et al. Intensive Multiagent Therapy, Including
Dose-Compressed Cycles of Ifosfamide/Etoposide and
Vincristine/Doxorubicin/Cyclophosphamide, Irinotecan, and Radiation,
in Patients With High-Risk Rhabdomyosarcoma: A Report From the
Children's Oncology Group. J. Clin. Oncol. 34, 117–122
(2016).
-
Grier, H. E. et al. Addition of ifosfamide and etoposide to
standard chemotherapy for Ewing's sarcoma and primitive
neuroectodermal tumor of bone. N. Engl. J. Med. 348, 694–701
(2003).
-
Yeh, J. M. et al. Life Expectancy of Adult Survivors of
Childhood Cancer Over 3 Decades. JAMA Oncol (2020).
doi:10.1001/jamaoncol.2019.5582
-
Chan, E. M. et al. WRN helicase is a synthetic lethal target
in microsatellite unstable cancers.Nature568, 551–556 (2019).
-
Behan, F. M. et al. Prioritization of cancer therapeutic
targets using CRISPR-Cas9 screens.Nature568, 511–516 (2019).
-
Gröbner, S. N. et al. The landscape of genomic alterations
across childhood cancers.Nature555, 321–327 (2018).
-
Ma, X. et al. Pan-cancer genome and transcriptome analyses of
1,699 paediatric leukaemias and solid tumours.Nature555,
371–376 (2018).
-
Roberts, C. W. M. & Biegel, J. A. The role of SMARCB1/INI1 in
development of rhabdoid tumor. Cancer Biol. Ther. 8, 412–416
(2009).
-
Crompton, B. D. et al. The genomic landscape of pediatric
Ewing sarcoma. Cancer Discov 4, 1326–1341 (2014).
-
Harris, M. H. et al. Multicenter Feasibility Study of Tumor
Molecular Profiling to Inform Therapeutic Decisions in Advanced
Pediatric Solid Tumors: The Individualized Cancer Therapy (iCat)
Study. JAMA Oncol 2, 608–615 (2016).
-
Mody, R. J. et al. Integrative Clinical Sequencing in the
Management of Refractory or Relapsed Cancer in Youth.
JAMA 314, 913–925 (2015).
-
Parsons, D. W. et al. Diagnostic Yield of Clinical Tumor and
Germline Whole-Exome Sequencing for Children With Solid Tumors.
JAMA Oncol 2, 616–624 (2016).
-
Meyers, R. M. et al. Computational correction of copy number
effect improves specificity of CRISPR-Cas9 essentiality screens in
cancer cells. Nature genetics 350, 1096 (2017).
-
Warren, A. et al. Global computational alignment of tumor and
cell line transcriptional profiles. Nat Commun 12, 22 (2021).
-
Ghandi, M. et al. Next-generation characterization of the
Cancer Cell Line Encyclopedia.Nature569, 503–508 (2019).
-
Morozova, O., Newton, Y., Cline, M., Zhu, J. & Learned, K. Abstract
lb-212: Treehouse childhood cancer project: a resource for sharing
and multiple cohort analysis of pediatric cancer genomics data.
(2015).
-
Drexler, H. G. et al. p53 alterations in human
leukemia-lymphoma cell lines: in vitroartifact or prerequisite for
cell immortalization? Leukemia 14, 198–206 (2000).
-
Ben-David, U., Beroukhim, R. & Golub, T. R. Genomic evolution of
cancer models: perils and opportunities. Nat. Rev. Cancer 19, 97–109
(2019).
-
Doench, J. G. et al. Optimized sgRNA design to maximize
activity and minimize off-target effects of CRISPR-Cas9. Nature
biotechnology 34, 184–191 (2016).
-
Rossen, J. & Pan, J. Extracting Biological Insights from the Project
Achilles Genome-Scale CRISPR Screens in Cancer Cell Lines. bioRxiv
20, 720243 (2019).
-
McDonald, E. R. et al. Project DRIVE: A Compendium of Cancer
Dependencies and Synthetic Lethal Relationships Uncovered by
Large-Scale, Deep RNAi Screening. Cell 170, 577–592.e10 (2017).
-
Tsherniak, A. et al. Defining a Cancer Dependency Map. Cell
170, 564–576.e16 (2017).
-
Dempster, J. M. et al. Extracting Biological Insights from
the Project Achilles Genome-Scale CRISPR Screens in Cancer Cell
Lines. bioRxiv 20, 720243 (2019).
-
Children Successfully MATCHed to Therapies. Cancer Discov 9,
OF3–OF3 (2019).
-
Tisato, V., Voltan, R., Gonelli, A., Secchiero, P. & Zauli, G.
MDM2/X inhibitors under clinical evaluation: perspectives for the
management of hematological malignancies and pediatric cancer. J
Hematol Oncol 10, 133–17 (2017).
-
Howard, T. P. et al. MDM2 and MDM4 are Therapeutic
Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Res
canres.3066.2018 (2019). doi:10.1158/0008-5472.CAN-18-3066
-
Stolte, B. et al. Genome-scale CRISPR-Cas9 screen identifies
druggable dependencies in TP53 wild-type Ewing sarcoma. J. Exp. Med.
215, 2137–2155 (2018).
-
Guenther, L. M. et al. A Combination CDK4/6 and IGF1R
Inhibitor Strategy for Ewing Sarcoma. Clin. Cancer Res. 25,
1343–1357 (2019).
-
Wood, A. C. et al. Dual ALK and CDK4/6 Inhibition
Demonstrates Synergy against Neuroblastoma. Clin. Cancer Res. 23,
2856–2868 (2017).
-
Mills, C. C., Kolb, E. A. & Sampson, V. B. Recent Advances of
Cell-Cycle Inhibitor Therapies for Pediatric Cancer. Cancer Res 77,
6489–6498 (2017).
-
Olanich, M. E. et al. CDK4 Amplification Reduces Sensitivity
to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma. Clin.
Cancer Res. 21, 4947–4959 (2015).
-
Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and
effective in diverse cancer models. 538, 477–482 (2016).
-
Gonçalves, E. et al. Drug mechanism-of-action discovery
through the integration of pharmacological and CRISPR screens.
bioRxiv 20, 2020.01.14.905729 (2020).
-
Durbin, A. D. et al. Selective gene dependencies in
MYCN-amplified neuroblastoma include the core transcriptional
regulatory circuitry. Nature genetics 50, 1240–1246 (2018).
-
Gryder, B. E. et al. Histone hyperacetylation disrupts core
gene regulatory architecture in rhabdomyosarcoma.
Nature genetics
51, 1714–1722 (2019).
-
Frumm, S. M. et al. Selective HDAC1/HDAC2 inhibitors induce
neuroblastoma differentiation. Chem. Biol. 20, 713–725
(2013).
-
Pappo, A. S. et al. R1507, a monoclonal antibody to the
insulin-like growth factor 1 receptor, in patients with recurrent or
refractory Ewing sarcoma family of tumors: results of a phase II
Sarcoma Alliance for Research through Collaboration study. J. Clin.
Oncol. 29, 4541–4547 (2011).
-
Juergens, H. et al. Preliminary efficacy of the
anti-insulin-like growth factor type 1 receptor antibody figitumumab
in patients with refractory Ewing sarcoma.
J. Clin. Oncol. 29, 4534–4540 (2011).
-
Tap, W. D. et al. Phase II study of ganitumab, a fully human
anti-type-1 insulin-like growth factor receptor antibody, in
patients with metastatic Ewing family tumors or desmoplastic small
round cell tumors. J. Clin. Oncol. 30, 1849–1856 (2012).
-
Beckwith, H. & Yee, D. Minireview: Were the IGF Signaling Inhibitors
All Bad? Mol. Endocrinol. 29, 1549–1557 (2015).
-
Subramanian, A. et al. Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550 (2005).
-
Filbin, M. & Monje, M. Developmental origins and emerging
therapeutic opportunities for childhood cancer. Nat. Med. 25,
367–376 (2019).
-
Chen, L. et al. CRISPR-Cas9 screen reveals a MYCN-amplified
neuroblastoma dependency on EZH2. J. Clin. Invest. 128, 446–462
(2018).
-
Oberlick, E. M. et al. Small-Molecule and CRISPR Screening
Converge to Reveal Receptor Tyrosine Kinase Dependencies in
Pediatric Rhabdoid Tumors. Cell Rep 28, 2331–2344.e8 (2019).
-
Hong, A. L. et al. Renal medullary carcinomas depend upon
SMARCB1 loss and are sensitive to proteasome inhibition. Elife 8,
818 (2019).
-
Eichenmüller, M. et al. The genomic landscape of
hepatoblastoma and their progenies with HCC-like features. J.
Hepatol. 61, 1312–1320 (2014).
-
Thériault, B. L., Dimaras, H., Gallie, B. L. & Corson, T. W. The
genomic landscape of retinoblastoma: a review. Clin. Experiment.
Ophthalmol. 42, 33–52 (2014).
-
Shern, J. F. et al. Comprehensive genomic analysis of
rhabdomyosarcoma reveals a landscape of alterations affecting a
common genetic axis in fusion-positive and fusion-negative tumors.
Cancer Discov 4, 216–231 (2014).
-
Johann, P. D. et al. Atypical Teratoid/Rhabdoid Tumors Are
Comprised of Three Epigenetic Subgroups with Distinct Enhancer
Landscapes. Cancer Cell 29, 379–393 (2016).
-
Chun, H.-J. E. et al. Genome-Wide Profiles of Extra-cranial
Malignant Rhabdoid Tumors Reveal Heterogeneity and Dysregulated
Developmental Pathways. Cancer Cell 29, 394–406 (2016).
-
Northcott, P. A. et al. The whole-genome landscape of
medulloblastoma subtypes.Nature547, 311–317 (2017).
-
Pugh, T. J. et al. The genetic landscape of high-risk
neuroblastoma. Nature genetics 45, 279–284 (2013).
-
Kovac, M. et al. Exome sequencing of osteosarcoma reveals
mutation signatures reminiscent of BRCA deficiency.
Nat Commun 6, 8940 (2015).
-
Braunstein, S., Raleigh, D., Bindra, R., Mueller, S. & Haas-Kogan,
D. Pediatric high-grade glioma: current molecular landscape and
therapeutic approaches. J. Neurooncol. 134, 541–549 (2017).
-
Lafin, J. T., Bagrodia, A., Woldu, S. & Amatruda, J. F. New insights
into germ cell tumor genomics. Andrology 7, 507–515 (2019).